
Data Science -Advanced
Python
Course Content:
1. Python Installation
2. Data Structures in Python
· List
· Tuples
· Dictionaries
· Sets
3. Control Statements and functions
· Introduction
· If Elif Else
· Loops
· Comprehension
· Functions
· Map, Filter and Reduce
4. Python for Data Science
· Introduction to NumPy
· NumPy Basics
· Creating NumPy Arrays
· Structure and Content of Arrays
· Subset, Slice, Index and Iterates
through Arrays
· Multidimensional Arrays
5. Operations on NumPy Arrays
· Introduction
· Basic Operators
· Operations on Arrays
· Basic Linear Algebra Operations
6. Introduction to Pandas Arrays
· Introduction
· Pandas Basics
· Indexing and Selecting Data
· Merge and Append
· Grouping and Summarizing Data Frames
· Lambda Functions and Pivot Tables
7. Getting and Cleaning data
· Introduction
· Reading Delaminated and Relational Database
· Reading Data from Website
· Getting Data from API’s
· Cleaning Data Sets
8. Data Visualization in Python
· Necessity of Visualization
· Data Handling and Cleaning
· Sanity Checks
· Outliers
9. Data Visualization with Seaborn
· Introduction
· Distribution Plots
· Styling Options
· Pie Charts and Bar Charts
· Scatter Plots
· Pair Plots
· Heatmaps
· Line Charts
· Stacked Bar Charts
Statistics
1. Exploratory Data Analysis:
· Data Sourcing
· Data Cleaning
· Univariate Analysis
· Segmented Univariate
· BivariateAanalysis
· Derived Metrics
2. Introduction and Git
3. Inferential Stats
· Basics of Probability
· Discrete Probability Distribution
· Continuous Probability Distribution
· Central Limit Theorem
4. Hypothesis Testing
· Concepts of Demonstration
· Industry Demonstration
Machine Learning- I
· Linear Regression
· Logistic Regression
· Naïve Bayes
· Model Selection
Machine Learning- II
· Advanced Regression
· Tree Models
· Boosting
· Unsupervised Learning
Deep Learning
· Introduction to Neural Network-I
· Introduction to Neural Network-II
· ANN, CNN, RNN, Pooling Layers
Natural Language Processing
· Lexical Processing
· Syntactic Processing
· Semantic Processing- I
· Semantic Processing- II
Additional Concepts
v Application of Deep Learning in NLP-I
v Application of Deep Learning in NLP-II
v Introduction to MLOP’s
v MLOP’s + Deployment
v MLOP’s + Prerequisite
v Automating ML Workflow
v PCA, Time Series.
v AWS- Sage maker, Flask
v CV, Reinforcement Learning
v Building Continuous Learning Infrastructure
v Designing Machine Learning System
v Chat Bots